
0
Copyright Ronald W. Ritchey 2008, All Rights Reserved

SWE 781
Secure Software Design and Programming

Ron Ritchey, Ph.D.
Chief Scientist

703/377.6704
Ritchey_ronald@bah.com

Error Handling
Lecture 5

Copyright Ronald W. Ritchey 2008, All Rights Reserved
1

Schedule (tentative)
Date Subject

Sep 1st Introduction (today) ; Chess/West chapter 1, Wheeler chapters 1,2,3

Sep 8th Computer attack overview

Sep 15th Input Validation; Chess/West chapter 5, Wheeler chapter 5

Sep 22nd Buffer Overflows; Chess/West chapters 6, 7; Wheeler chapter 6

Sep 29th Class Cancelled

Oct 6th Error Handling; Chess/West chapter 8; Wheeler chapter 9 (9.1, 9.2, 9.3 only)

Oct 13th Columbus Recess

Oct 20th Mid-Term exam

Oct 27th Mid Term Review / Major Assignment Introduction; Privacy, Secrets, and Cryptography;
Chess/West chapter 11; Wheeler chapter 11 (11.3, 11.4, 11.5 only)

Nov 3rd Implementing authentication and access control

Nov 10th Web Application Vulnerabilities; Chess/West chapter 9,10

Nov 17th Secure programming best practices / Major Assignment Stage Check ; Chess/West chapter
12; Wheeler chapters 7,8,9,10

Nov 24th Static Code Analysis & Runtime Analysis

Dec 1st The State of the Art (guest lecturer)

Dec 8th TBD (Virtual Machines, Usability [phishing], E-Voting, Privilege Separation, Java Security,
Network Security & Worms)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
2

Today’s Agenda *

  Error Handling, What could possibly go wrong?
  Handling return codes
  Managing exceptions
  Preventing resource leaks
  Logging and debugging
  Minor Assignment 3

* Today’s materials derive heavily from
Chess/West, Securing Programming with Static Analysis

Copyright Ronald W. Ritchey 2008, All Rights Reserved
3

Error Handling: What could possibly go
wrong?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
4

Ariane V crashed due to an unhandled exception

  Error was an arithmetic overflow caused by the conversation
from a 64 bit float into a 16 bit integer value

  Value recorded horizontal velocity
  Software based upon software from the Ariane IV

•  A much slower rocket with a very different launch profile
•  The Ariane V launches much faster and more vertically

  Even though the rocket had redundant CPUs this didn’t help
because both were running the exact same software

  Routine that failed part of a realignment routine that was not
needed on the Ariane V

Copyright Ronald W. Ritchey 2008, All Rights Reserved
5

Today’s Agenda

  Error Handling, What could possibly go wrong?
  Handling return codes
  Managing exceptions
  Preventing resource leaks
  Logging and debugging
  Minor Assignment 3

Copyright Ronald W. Ritchey 2008, All Rights Reserved
6

Returns often overloaded to include return
value and error codes

  Technique very popular with C/
C++ code but shows up in most
languages

  Forces caller to differentiate
between valid and error

  No common semantics are
enforced. Every programming
can implement the return/error
logic differently

  Easy to ignore errors

#define MAXVALUE 1023
#define ERR_NULL -1
#define ERR_TOOBIG -2

int my_strlen(char *s) {
 int c=0; i;

 if (s == NULL) return ERR_NULL;
 for (i = 0; i < MAXVALUE; i++) {
 if (s[i] == ‘\0’) return c;
 c++;
 }
 return ERR_TOOBIG;
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
7

Return value error codes often ignored

  Very common error to not
validate return values
especially for functions that
do not normally experience
error conditions

  Creates many exploitable
vulnerabilities
•  Remember normal is not what

the attackers will provide

char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

char buf[10], cp_buf[10];
char * ret = fgets(buf, 10, stdin);
if (ret != buf) {
 report_error(errno);
 return;
}
strcpy(cp_buf, buf);

Ignored return creates buffer overflow

Correct version eliminates overflow

Copyright Ronald W. Ritchey 2008, All Rights Reserved
8

Burying error values in same “space” as valid values
requires calling function to parse the difference

  There is only a single return value
from a function
•  Valid vs. Error must be determined by

how an error is encoded into the
return value

  Different functions use different
methods for doing this
•  Might use < 0 to indicate error in

numeric returns
•  Might use 0 to indicate error with

global variable used to indicate type of
error

•  Might screw it up and include a valid
value as an error value (e.g. 0 might
be a correct value or indicate function
failure)

#define MAXVALUE 1023
#define ERR 0

int my_strlen(char *s) {
 int c=0; i;

 if (s == NULL) return ERR;
 for (i = 0; i < MAXVALUE; i++) {
 if (s[i] == ‘\0’) return c;
 c++;
 }
 return ERR;
}

What’s
wrong with
this code?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
9

Error handling interspersed with functional
logic makes it easier to make mistakes

  Anything that increases
complexity increases bugs

  Common mistakes from
mixing error handling into
function code include:
•  Not catching all error

conditions
•  Changing the functional

intention of the code when
errors occur

•  Not cleaning up especially
where dynamic memory
management is concerned

#define MAXVALUE 1023
#define ERR_NULL -1
#define ERR_TOOBIG -2

char * func(char *s) {
 int c=0; i;
 char * sl;

 sl = malloc(sizeof(char)*MAXVALUE);
 if (s == NULL || sl == NULL)
 return (char *) ERR_NULL;

 for (i = 0; i < MAXVALUE; i++) {
 sl[i] = s[i];
 if (s[i] == ‘\0’) return sl;
 }

 free(sl);
 return (char *) ERR_TOOBIG;
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
10

Better to push error handling to the end of the
function so recovery activities are consistent

  Separating error handling
logic from functional logic
makes the code easier to
read and more maintainable

  Makes recovery activities
consistent.
•  Important for any state

changes that need to be rolled
back e.g.

-  Dynamic memory
allocation

-  Resource locking

char * func(char *s) {
 int c=0,i,err_val=0;
 char * sl=NULL;

 sl = malloc(sizeof(char)*MAXVALUE);
 if (s == NULL || sl == NULL) {
 err_val = ERR_NULL;
 goto ERR_HANDLER;
 }

 for (i = 0; i < MAXVALUE; i++) {
 sl[i] = s[i];
 if (s[i] == ‘\0’) return sl;
 }
 err_val = ERR_TOOBIG;

ERR_HANDLER:
 if (sl != NULL) free(sl);
 return err_val;
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
11

Today’s Agenda

  Error Handling, What could possibly go wrong?
  Handling return codes
  Managing exceptions
  Preventing resource leaks
  Logging and debugging
  Minor Assignment 3

Copyright Ronald W. Ritchey 2008, All Rights Reserved
12

Exceptions more elegant system for managing
error handling

  Exceptions allows structure to formally separate functional
logic from error condition handling
•  Uses a try/catch structure

try {

 some code that could produce exception

}

catch (BadException e) {

 log it and recover

}

  Can be checked or unchecked
•  Java compiler verifies that exceptions are addressed in code
•  C++ does not have this feature
•  Checked exceptions force developers to specifically handle error

conditions

Copyright Ronald W. Ritchey 2008, All Rights Reserved
13

Unhandled exceptions will cause program
termination; this is a good thing

  Important to differentiate between exceptions that can be handled
safely within the program and those that require the process to exit

  Need to make sure that exception data is not communicated to the user
of the application
•  Requires top level exception handler to catch remaining exceptions before

terminating the application

protected void doPost (HttpServleyRequest req, HttpServletResponse res) {

 try {

 String ip = req.getRemoteAddr();

 InetAddress addr = InetAddress.getByName(ip);

 out.println(“hello “ + Utils.processHost(addr.getHostName()));

 }

 catch (UnknownHostException e) { logger.error(“ip lookup failed”, e); }

 catch (Throwable t) {
logger.error(“caught Throwable at top level”, t); }

}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
14

Network servers (e.g. Web) in particular should not
allow users to see unhandled exception data

Application: photosprintshopWeb
Error: java.lang.IllegalStateException exception
Reason:
java.lang.IllegalStateException: An Exception occurred while generating the Exception page
'WOExceptionPage'. This is most likely due to an error in WOExceptionPage itself. Below are the logs of first
the Exception in WOExceptionPage, second the Exception in Application that triggered everything.

com.webobjects.foundation.NSForwardException [com.webobjects.jdbcadaptor.JDBCAdaptorException]
dateInformation of type java.lang.String is not a valid Date type. You must use java.sql.Timestamp,
java.sql.Date, or java.sql.Time: <Session> failed instantiation. Exception raised :
com.webobjects.jdbcadaptor.JDBCAdaptorException: dateInformation of type java.lang.String is not a valid
Date type. You must use java.sql.Timestamp, java.sql.Date, or java.sql.Time:
com.webobjects.jdbcadaptor.JDBCAdaptorException: dateInformation of type java.lang.String is not a valid
Date type. You must use java.sql.Timestamp, java.sql.Date, or java.sql.Time

Original Exception:
com.webobjects.jdbcadaptor.JDBCAdaptorException: dateInformation of type java.lang.String is not a valid
Date type. You must use java.sql.Timestamp, java.sql.Date, or java.sql.Time

Copyright Ronald W. Ritchey 2008, All Rights Reserved
15

Be careful not to catch things just to catch them

  Except for catching exceptions at the top level …
Only catch exceptions for which you have a reasonable
recovery strategy
•  Example: A FileNotFoundException might recover by allowing the

user to specify a different file name
•  Example: Resource exhaustion errors such as

System.OutOfMemoryException will likely need to result in process
termination

  Be specific about what exceptions you are actually catching
•  Don’t be tempted to catch Exceptions at the top of the Exception class

  Don’t dumb down security functionality in your error handlers!

Copyright Ronald W. Ritchey 2008, All Rights Reserved
16

Example from Tomcat
protected synchronized Random getRandom() {
 if (this.random == null) {

 try {

 Class clazz = Class.forName(randomClassic);

 this.random = (Random) clazz.newInstance();

 long seed = System.currentTimeMillis();

 char entropy[] = getEntropy().toCharArray();

 for (int i = 0; i < entropy.length; i++) {

 long update = ((byte) entropy[i]) << ((i % 8) * 8);

 seed ^= update;

 }

 this.random.setSeed(seed);

 } catch (Exception e) {
 this.random = new java.util.Random();
 }

 }

 return (this.random);

}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
17

Be specific about what exceptions your code
throws

  Specifying what exceptions a caller should expect from your
code provides them a roadmap for what conditions they may
need to handle
•  Better:

-  throws IOException, SQLException, IllegalAccessException
•  Weaker

-  throws Exception

  The weaker version makes it difficult for the caller to know
what exceptions to catch

Copyright Ronald W. Ritchey 2008, All Rights Reserved
18

Be careful not to quash exceptions accidentally

  C++ and Java support try/catch/finally
  Finally executes after try block regardless of whether catch

was used or not
  Returning from within finally will “catch” any exceptions that

have been generated within the try block
•  Unhandled exceptions will not be passed to the parent function!

public static void doMagic(boolean returnFromFinally)
throws MagicException {

 try { throw new MagicException(); }

 finally {

 if (returnFromFinally) { return;}
 }
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
19

Makes sure to log exceptions

  Exceptions often indicate unusual conditions
•  May be caused by unexpected system states, ill formed input, etc.
•  Could also be caused by intentional abuse by attacker

  Logging exceptions can greatly decrease debugging difficulty
  Logging can also be used in intrusion detection
  Rare exceptions are especially useful for debugging and ID
  General rule is to write a log entry except in the case that the

exception is part of normal processing and can be completely
handled within the program

try { doExchange(); }

catch (RareException e) {

 throw RuntimeException(“This can never happen”, e);

}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
20

Today’s Agenda

  Error Handling, What could possibly go wrong?
  Handling return codes
  Managing exceptions
  Preventing resource leaks
  Logging and debugging
  Minor Assignment 3

Copyright Ronald W. Ritchey 2008, All Rights Reserved
21

Failing to properly manage resources is a common
and difficult to debug programming issue

  Programs have to manage many types of resources
•  Memory, file handles, database objects, sockets

  Improperly managing the resources can cause very difficult to
debug issues
•  Tend to occur infrequently due to unusual usage scenarios or during

periods of high program or system load
•  Failure often occurs in sections of the code separate from where the

underlying bug exists
  Security issue is denial of service.

•  Attacker can specifically cause program to consume increasing
amounts of resource until the are all used up

  Also leads to other stability / performance issues
•  E.g. There’s no problem. We just reboot it once a day!

Copyright Ronald W. Ritchey 2008, All Rights Reserved
22

Watch for out for returns mid-function
  Many failures to release resources

are caused by functions that have
multiple exit points
•  Need to ensure that every path

through function results in release of
all temporary resources the function
has tied up

  Often easier to push resource
initialization and resource release
to the front and the back of the
function
•  Initialization often occurs at

beginning by default
•  Moving release to the end can

require complex coding structures or
the use of the much maligned goto

char* getBlock(int fd) {
 char* buf =
 (char*)malloc(BLOCK_SIZE);

 if (!buf) {
 return NULL;
 }

 if (read(fd, buf, BLOCK_SIZE) !=
 BLOCK_SIZE) {
 return NULL;
 }
 return buf;
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
23

OO languages like C++
have much cleaner syntax
for resource management
  Introduces concept of

constructor and destructor
•  Constructor called when object is

instantiated
•  Destructor called when object

goes out of scope
  Can guarantee proper resource

management
•  If all resources allocated in the

constructor are released in the
destructor

•  And no other allocation occurs in
the function

class File_handle {
 FILE* f;
 public:
 File_handle(const char* name,
 const char* mode)
 { f = fopen(name,mode);
 if (f==0)
 throw Open_error(errno);
 }
 ~File_handle() { if (f) {fclose(f);} }
 operator File*() { return f; }
 ...
};

void decodeFile(const char* fname) {
 char buf[BUF_SZ];
 File_handle f(fName, “r”);

 if (!f) {
 printf(“cannot open %s\n”, fName);
 throw Open_error(errno);
 } else {
 while (fgets(buf, BUF_SZ, f)) {
 if (!checkChecksum(buf)) {
 throw Decode_failure();
 } else {
 decodeBlock(buf);
 }
 }
 }
}

What’s the danger in
this approach?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
24

With Java, there is not explicit destructor.

  Unlike C++, Java manages memory internally
•  Objects that are simply consuming memory do not need to be

explicitly released as Java will release the memory automatically
•  No explicit destructor in Java

  No automatic management for other resource types (e.g.
database handles)
•  Must release yourself anything you have consumed

  Finally is the most obvious method as it will always get
executed at the end of a try block

Copyright Ronald W. Ritchey 2008, All Rights Reserved
25

Finally can be used for resource release

  Finally is a useful constructor for
resource management in Java
because it will always execute at
the end of the try block regardless
of any errors that occur

  It use requires a few stipulations
•  Resources must be declared outside

the try block (otherwise they would
not be in scope inside the finally)

•  They must be forced to initialize
•  Finally must verify that the Resource

has been consumed
•  Finally must be prepared to catch

any exceptions the close() can throw

Statement stmt=null;
try {
 stmt = conn.createStatement();
 ResultSet rs =
 stmt.executeQuery(CXN_SQL);
 harvestResults(rs);
}
catch(SQLException e) {
 logger.log(Level.ERROR,
 “error executing sql query”, e);
}
finally {
 if (stmt != null) {
 try {
 stmt.close();
 } catch(SQLException e) {
 log(e);
 }
 }
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
26

Today’s Agenda

  Error Handling, What could possibly go wrong?
  Handling return codes
  Managing exceptions
  Preventing resource leaks
  Logging and debugging
  Minor Assignment 3

Copyright Ronald W. Ritchey 2008, All Rights Reserved
27

Logging is an important but frequently
neglected aspect of application development

  When implemented well can provide key insights into
operational and developmental issues with a system
•  Can provide direct insight into failures
•  Can provide evidence of attack

  When implemented poorly can assist in attacks

Username not found in Table Users

Microsoft OLE DB Provider for
ODBC Drivers error '80040e07'
[Microsoft][ODBC SQL Server
Driver][SQL Server]Syntax
error converting the nvarchar
value 'login_id' to a column
of data type int.

/index.asp, line 5

Copyright Ronald W. Ritchey 2008, All Rights Reserved
28

Use of centralized logging code makes log
message creation more consistent and useful

  Centralized logging provide many benefits
•  Enables common format of log entries
•  Entries across system are logged consistently greatly adding analysis
•  Allows easy modification of logging behavior

-  Change storage type of logs
-  Add enhanced logging features (e.g. distributed logging, forward

hashing, etc.)
  Many existing log frameworks exist (e.g. log4j, java.util.logging)
  If creating your own make sure to

•  Have ability to log different types of information (e.g. normal, elevated,
critical). Consider making the categories editable.

•  Timestamp all entries. Makes analysis (especially across multiple
systems) MUCH easier. Consider sub second accuracy.

•  Make sure to log the source of the entry (both system and application)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
29

Log early and often

  A logging framework adds no value if important events go
unrecorded
•  Log all important activities

-  Use of multiple levels of logging would allow administrators to
tune logs if volume is too large

•  An unrecorded activity will never help you find out what went wrong

  Be very careful about what you log
•  Log files may be accessible to people without any need to know

information that your application processes
•  GET /cgi/usr.cgi?username=rritchey&pwd=Secret HTTP/1.0" 200
•  Sensitive data such as passwords, credit cards, and SSNs should not

be written to log files
  Make sure to protect your logs

Copyright Ronald W. Ritchey 2008, All Rights Reserved
30

Debugging code must be removed before
application is put into production

  Code is often added that has the sole purpose of allowing the
developer to understand better what the code is doing
•  May allow code to be tested at the unit vs. system level
•  Could allow developer to trace execution based upon particular input
•  Many other uses
•  This is a good practice

  Must never leave this code in to production systems
•  As it was probably added without any specific design, much more

likely to introduce bugs
•  May allow attacker to bypass security controls

  Segregate debugging code to enable you to remove it easily

Copyright Ronald W. Ritchey 2008, All Rights Reserved
31

Today’s Agenda

  Error Handling, What could possibly go wrong?
  Handling return codes
  Managing exceptions
  Preventing resource leaks
  Logging and debugging
  Minor Assignment 3

Copyright Ronald W. Ritchey 2008, All Rights Reserved
32

Minor Assignment Three

  Task: Create a protected user account database.
  Detail: Applications frequently need to securely identify a user

prior to allowing them to access the system. Your task in this
assignment is to create a system to implement a username/
password based authentication system. The following
features are mandatory :
•  Must maintain user accounts across executions (e.g. long term

storage)
•  Must allow the creation, deletion of user accounts
•  Must associate a password to each user account. This should be

under the control of the user
•  Must provide a demonstration application that grants user access

when provide a valid username/password pair

Copyright Ronald W. Ritchey 2008, All Rights Reserved
33

Minor Assignment Three (cont)

  The passwords must be protected.
•  No administrator who has access to the underlying file system should

be able to see clear text passwords (hint – cryptographic hashing)
•  The password file itself should be protected from tampering

  As with the previous assignments, you must reject bad input
  Permissible languages: C/C++, Java, Perl, Other with

permission of instructor
  Due Date: Oct 27th

34
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Next Thursday’s Class

Privacy, Secrets, and Cryptography

35
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Questions?

